High Production Automotive Foundry

SO2 Gassing System Case Study

Prepared by: MT Systems, Inc. 110 E. Williams Street Danville, IL 61834-2086 Phone: (217) 446-4646

System Start Up Date:

Copyright © 2000 M T Systems, Inc.

November 14, 2002 Last Updated

Introduction

Many foundries use the Epoxy Acrylic Cold Box chemical system to produce cores. This process uses SO₂ as the catalyst to cure the core. The typical facility using the ISOSET® is a high production automotive supplier. There have been two major advancements in SO₂ curing over the last several years. The first is to blend the SO₂ with N₂ to reduce core residual and environment PPM's. The second is to super heat the blended gas which reduces gassing times and increases core tensiles.

General Foundry Information	
Product Line:	Diesel Blocks
	Diesel Heads
	Gas Blocks
	Exhaust Manifolds
	Intake Manifolds
	Transmission Gears
	Connecting Rods
	Steering Housings
	Pistons
Casting Metal Type:	Grey Iron
	Malleable Iron
	Aluminum
Melting Facility:	Induction
	Electric Arc
Core Processes:	Epoxy Acrylic
Molding Processes:	Green Sand

Project Objectives
Improve Process Repeatability
Reduce Environmental Problems
Improve Machine Productivity
Simplify Handling of SO ₂

Original Problems

Inaccurate/Inconsistent Vaporizing of SO₂ Liquid

Higher than desired PPM Employee Exposure Levels

High Residual SO₂ being released from cores

Hardware Configuration

Installation typically includes a SO₂ Vaporizer, Blender, Super Heater and Analyzer System to provide blended SO₂/ N₂ to the central gassing header. Optionally, each core machine station can be equipped with a gassing tank to enable each machine to operate at a different gassing pressure.

- **Vaporizing System** provides a supply of vaporized SO₂ to the system and allows for the complete emptying of the liquid cylinder for uninterrupted operation during cylinder changes.
- **Blending System** gives the flexibility of changing the ratio of SO₂/N₂ Gas used during the gassing cycle. This mixture of SO₂ and N₂ results in lower residual PPM's.
- **Super Heater** provides the ability to elevate the blended gas up to over 200F. This hotter temperature speeds the curing process and creates a higher core tensile.
- **Online analyzing** of gas ratios provides continuous monitoring and recording of process changes
- **Surge Tanks** individual core machine gas surge tanks allow for changes in gassing pressure requirements to accommodate for different requirements in jobs or tooling needs. Online diagnostics provides guides in the event of alarm situations. There are also built in provisions for operator and system safety.

Core Information from Customer Foundry	
Number of SO ₂ /N ₂ Blending Systems	1
Number of Core Machines	7
Approximate blow capacity ranges	1 lb. to 60 lbs.
Average Machine Cycle	N/A
Gassing Times	1.0
Purge Time	15-18 sec.
Gassing Pressure	15 to 18 PSI
Purge Pressure	25 PSI
Avg. SO ₂ usage	16 Lbs/Ton of Mixed Sand

Results and Benefits from Customer	
Foundry	
Reduction in SO ₂ core residuals by	100% to 55%
Reduced core scrap by (scrap is based on inventory vs. actual production cycles)	.5%
Increased productivity by reducing purge times (Over 53% reduction)	Before = $15-18$ sec. After = $7-8$ sec.
Lower environmental PPM exposure levels produced fewer SO ₂ alarms per day	Before = 50-150 PPM After = 1-5 PPM
Lower residual SO ₂ released from new cores	70% reduction
Higher Transverse strength in a selected test core	Before = 15.5 PSI After = 21 PSI (35.5% increase)
Constant control of gassing PSI with the ability to change gassing PSI from operator interface for any given machine setup requirement or conditions	
Better gas flowability through cores	
Built in reliable safety features meet AMSE requirements	
State of the art process control	
Reduced resin wipe off on core box resulting from better curing	
Highly improved ease of isolating the system for repairs and maintenance	

System Justification	
System Justification	
Improved environmental exposure levels	
Lower purge cycle times have increased machine productivity	
Better competitive position in the market place	
Lower air compressor energy usage resulting from lower purge air times	